ADVANCED DIGITAL COMMUNICATIONS

17ECMC1T2	Credits: 4
Lecture: 4 periods/week	Internal assessment: 40 marks
	Semester end examination: 60 marks

Prerequisites: Digital communications

Course Objectives:

- To provide the student with an understanding of modulation and multiple access techniques
- To provide the student with an understanding of Spread Spectrum and spreading sequences
- To provide the student with an understanding of Equalization techniques
- To give the student an understanding of Single and Multiuser detection techniques

Course outcomes:

After completion of the course the student is able to

- Design different modulation techniques with lower bandwidth
- Analyze different spread spectrum techniques and their performance
- Analyze different equalization techniques and transmits the data
- Able to design optimum filter which use low probability of error

UNIT I

Digital Modulation and Multiple Access Techniques: Digital Modulation Techniques: ASK, FSK, PSK, QPSK, DPSK and QAM Techniques. Multiple Access Techniques: introduction to FDMA, TDMA, CDMA and SDMA Techniques

UNIT II

Spread Spectrum Techniques and Pseudo-Random Code Sequences: Spread Spectrum Techniques: FDMA, TDMA CDMA, Direct-Sequence Spread-Spectrum Systems, Frequency Hopping Systems, and Commercial Applications.

Pseudo-Random Code Sequences: Generation of binary pseudo-random sequences, Maximallength sequences (m-sequences), preferred pairs of m-sequences, Gold sequences, Kasami sequences, Walsh sequences.

UNIT III

Equalization and Adaptive Equalization Techniques: Equalization Techniques: Linear equalization, Decision – feedback equalization, iterative equalization and decoding- Turbo equalization

Adaptive equalization: Adaptive linear equalizer, adaptive decision feedback equalizer, self recovering (blind) equalization.

UNIT IV

Single user and Multiuser Detection Techniques:Single –user matched filter receiver, optimum receiver structure, sub-optimum linear receiver structures: Decorrelating and MMSE Detectors, sub-optimal nonlinear receiver structures (interference cancellation): successive interference cancellation, parallel interference cancellation.

Text Books:

- 1. Simon Haykin "Digital communications" 8th edition Wiley
- 2. John G.Prokis, "Digital communications" 4th edition, Mc GRAW Hill, 2001
- 3. Bernard sklar "Digital Communications" Second EditionCommunications Engineering Services, Tarzana, and University of California, Los Angeles
- 4. S.verdu, "multi-user detection" Cambridge university press-1998.

Reference Books:

- 1. Andrew J.Viterbi, CDMA: "Principles of spread spectrum communications", Prentice Hall, USA, 1995.
- 2. Theodore S. Rappaport "wireless communication principles & practice" PHI Pub.